Kentech Instruments Ltd.

PBG3-D-V High Voltage Pulse Generator Serial No. J13, , , ,

Last modified

6-12-2013

PLEASE READ THIS MANUAL CAREFULLY BEFORE USING THE

PULSE GENERATOR.

Blue coloured text contains hyperlinks. Click on them to access the referenced link

Kentech Instruments Ltd., Isis Building, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, U.K. Tel: +44 (0) 1491 82 1601 E-mail info@kentech.co.uk

Web http://www.kentech.co.uk/

1 DISCLAIMER

This equipment contains high voltage power supplies. Although the current supply capacity is only moderate, careless use could result in electric shock. It is assumed that this highly specialised equipment will only be used by qualified personnel.

Kentech Instruments Ltd. accept no responsibility for any electric shock or injury arising from use or misuse of this equipment. It is the responsibility of the user to exercise care and common sense with this highly versatile equipment.

1	DISCLAIMER	2
2	INTRODUCTION	4
2.1	SAFETY CAUTION	4
2.2	CLEANING	4
2.3	SPECIFICATIONS	
2.4	ENVIRONMENTAL ISSUES	
2.4.1	STORAGE	
2.4.2	USE	
2.5	SHIPPING	6
3	OVERALL DESCRIPTION AND USE	6
3.1	INTRODUCTION	
3.2	CONNECTIONS	
3.2.1	MAIN OUTPUT	
3.3	CONTROLS	7
3.4	EQUIPMENT CAUTION	
3.4.1	REPETITION RATE	
3.5	CHARACTERISING THE PULSE OUTPUT	
3.6	RF EMISSIONS AND EC DIRECTIVE 89/336/EEC	
3.7	LIFETIME	
3.8	MAINTENANCE	
3.9	DECLARATION OF CONFORMITY	
3.10	TEST RESULTS	
3.10.1	RISE TIME	
3.10.2	JITTER - TIMING UNCERTAINTY	
3.10.3	AMPLITUDE CONTROL	
3.10.4	DELAYS	

Figure Captions

Figure 1	The 4 into 1 output combiner	6
Figure 2	Front panel of the unit	8
Figure 3	The Suicide "T"	9
Figure 4	Test set up	10
Figure 5	Effect of inserting a cable before the Suicide "T"	11
Figure 6	The long time history of the pulse at maximum amplitude	11
Figure 7	The monitor card under the top cover.	15
Figure 8	Rise time at maximum amplitude, 100.387ps indicated averaged over 104 shots.	. 19
Figure 9	Rise time at 75% amplitude, 92ps indicated	20
Figure 10	Rise time at 50% amplitude, 109ps indicated	21
Figure 11	Rise time at 25% amplitude, 105ps indicated	22
Figure 12	Jitter with external trigger in "Direct" mode.	23
Figure 13	Jitter with external trigger in "Delay" mode, set to zero.	24
Figure 14	Jitter with external trigger in "Delay" mode, set to maximum	25
Figure 15	Jitter with interanl trigger in "Delay" mode, set to zero	26
Figure 16	Jitter with internal trigger in "Delay" mode,	27
Figure 17	Range of amplitudes adjusted with the fine control at 100%	28
Figure 18	Range of amplitudes adjusted with the fine control at 75%	29
Figure 19	Range of amplitudes adjusted with the fine control at 50%	30
Figure 20	Range of amplitudes adjusted with the fine control at 25%	31
Figure 21	Range of amplitudes adjusted with the coarse control at 100%	32
Figure 22	Range of coarse delay. Approximately 10ns per step.	33
Figure 23	Range of fine delay at zero coarse delay	34
Figure 24	Internal trigger - Pretrigger pulse and main output	35

Tables

Table 1	Monitor Voltages	15
Table 2	Rise time considerations	18

2 INTRODUCTION

ual describes the operation and use of pulse generator model PBG3-D-V, serial number

2.1 SAFETY CAUTION

With an appropriate load, this unit is safe for use by an educated user in a laboratory environment. You are warned, however, that the radiation from the system with an antenna or inappropriate load attached can damage sensitive equipment and corrupt data stored in computer and microprocessor based systems. It can cause terminal failure of vital medical electronic systems such as pacemakers. This equipment is supplied on the understanding that the user will analyse these risks, accept responsibility for them and take appropriate precautions in the use of this instrument.

The output from this pulse generator will destroy many types of power attenuators and electronic test equipment. It is the users responsibility to ensure that any apparatus connected to the output is suitably rated.

Kentech Instruments Ltd accepts no responsibility for any damage or liabilities incurred in the operation of this equipment.

Please read the manual before applying power.

There are high voltages (4kV) present inside this pulse generator when the unit is operating.

The accessible terminals of this instrument are protected from hazardous voltages by basic insulation and protective grounding via the IEC power input connector. It is essential that the ground terminal of this connector is earthed via the power lead to maintain this protection.

2.2 CLEANING

If cleaning is necessary this should be performed with a soft dry cloth or tissue only.

2.3 SPECIFICATIONS

Number of channels	1
Maximum output pulse voltage	>12kV into 50 Ω .
Pulse shape	Fast rise ~100ps and slow decay ~3ns.
Polarity	Positive
Output voltage adjustment range	down to 21% of maximum.
	There are 4 ranges and a fine control. There is some overlap
	between the switched ranges and the fine control.
Trigger delay	~44.2ns in "direct" trigger mode.
	~51.1ns at zero delay in delayed trigger mode.
Jitter	<10ps Standard Deviation in "Direct" mode
Output pulse trigger delay range	\sim 100 ns in 10ns steps + fine delay.
Maximum repetition rate	1kHz gate pulse
Internal rate generator	0.1Hz to 1kHz
External trigger requirements	5 volts into 50Ω rising in < 5ns for optimum jitter.
Pre-trigger output	9V into 50Ω , precedes the main output by the delay set.
Controls	
Mode	Sets one of the following modes:-

	Single shot (delay active).
	Internal trigger 0.1-1Hz (delay active).
	Internal trigger 1-10Hz (delay active).
	Internal trigger 10-100Hz (delay active).
	Internal trigger 100-1000Hz (delay active).
	External trigger (delay active) "Delay".
	External trigger (delay inactive) "Direct".
Fine rate	Varies internal rate by a ratio of 10:1.
Coarse delay	Sets internal delay in 10ns steps, up to 100ns.
Fine delay	Single turn potentiometer gives approx. 12ns adjustment.
Single shot button	Depressing this button cause a single trigger when single shot mode selected.
Coarse amplitude	Sets amplitude in steps to 100, 75, 50 or 25%
Fine amplitude	Single turn potentiometer gives ~60 to 100% adjustment
n	of the coarse amplitude voltage setting.
Power	Switches AC power in the pulser.
Input power range	100 to 240 VAC 50 to 60Hz at <5 amps.
Indicators	
Power	Shows that AC power is applied and the unit is switched
	on.
Triggered	Illuminates when the unit is triggered.
Dimensions	
width	19 inch rack mount, 482 mm over handles,
depth	405mm into 19 inch rack, 445 mm over handles,
height	128.5 mm (3U)
weight	7.5 kg
Connectors	
Power inlet	IEC
Power inlet Pulse output	IEC HN female
Power inlet Pulse output Trigger input	IEC HN female BNC

2.4 ENVIRONMENTAL ISSUES

2.4.1 STORAGE

The unit should be stored in an environment within the following parameters:

Temperature	between 10°C and 40°C
Humidity	< 60% on condensing
Pressure	40 to 120 kPa
Gas type	Air or nitrogen

2.4.2 USE

The unit should be used in an environment within the following parameters:Temperature between 10°C and 30°CHumidity< 60% on condensing</td>Pressure80 to 120 kPaGas typeAir or nitrogen

2.5 SHIPPING

The unit should be sealed in a polythene, or similar, bag at a low humidity. The unit can then be shipped by normal means providing the packaging provides suitable mechanical protection. Shipping by air freight should be in pressurised holds. If this is not possible then the storage temperature and humidity parameters should be observed.

3 OVERALL DESCRIPTION AND USE

3.1 INTRODUCTION

The PBG3 series of pulse generators use avalanche transistor technology to deliver fast high voltage pulses. Many (~500) transistors are used in series parallel arrays to deliver the pulse. Although the output of this unit is >12kV, internally there are no DC voltages above 4kV.

For units fitted with a rate generator and delay option, the trigger pulse is first fed through a circuit that delays the trigger and amplifies it to a level suitable to drive the first avalanche stage. After that the pulse is successively amplified and split several ways to drive parallel arrays of pulse generator. Each array can generate $\sim 6kV$ into 50 Ω . Four such arrays are then summed to deliver 12kV into 50 Ω .

The rate generator allows the user to trigger externally directly into the pulser or to go via delays. In addition units with the "D" option can generate the trigger pulses internally. These are always routed through the delay section. In addition there is a single shot facility operated with a push button.

A pretrigger output is generated from the initial trigger pulse in all modes. In delayed modes the pretrigger will be generated before the delay section.

3.2 CONNECTIONS

The connections are simple, a single input to trigger the unit (for external triggering modes), a "pre-trigger" output that delivers a low voltage monitor pulse before the start of the delay section (even in non delayed modes) and the main output.

3.2.1 MAIN OUTPUT

The main output is an HN female connector. It is important that the unit is operated with a load connected, as the output connector may arc if not mated and this will erode the insulators.

The mating connector must be fully tightened down to ensure the centre pin makes good connection.

The thread on the HN connector should be lubricated fairly regularly, we recommend vacuum grease or some other non volatile lubricant. Without lubrication small particulates of brass can be eroded off the thread and contaminate the connector leading to a lower breakdown voltage.

Although this connector is being used way beyond its rated voltage, the pulse length is very short and generally these connectors perform very adequately.

3.3 CONTROLS

The controls allow the unit to operate in several modes, with or without delays and over a range of amplitudes. The specification 2.3 on page 4 lists these in detail.

Figure 2 Front panel of the unit

Figure 4 Test set up

Kentech Instruments Ltd., Isis Building, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, U.K.

10

Figure 5 Effect of inserting a cable before the Suicide "T" Maximum output with and without a 1m length of RG213 between the pulser output and the Suicide "T"

Figure 6 The long time history of the pulse at maximum amplitude. This is with the extesnsion lead between the pulser and the Suicide "T". The small negative spike at ~9.5 ns into the pulse is due to the lack of complete cancellation of the pulses in the two side arms of the Suicide "T".

3.4 EQUIPMENT CAUTION

The >12kV pulse from this unit is capable of destroying most types of power attenuators and loads including most of the high pulse power types.

The pulser was characterised at the factory using the supplied x2 Kentech Suicide "T" attenuator followed by three x10 Barth 142-NMFP-20dB attenuators then one Radiall 20dB attenuator.

The unit will destroy the Barth 142 if no suicide "T" attenuator is used and data obtained before it fails will exhibit non linearities.

The output may be observed with a high bandwidth oscilloscope. This may either be a fast (>3GHz) direct access type or a sampling type.

3.4.1 REPETITION RATE

Barth 142 attenuators are rated at an average power of 2 watts. The average power coming from the pulser is about 14 watts at 1kHz. Although the Suicide "T" reduces the peak power by a factor of 4 it does not change the average power much) some energy is absorbed by the pulser but the rest it transmitted eventually). Consequently:

DO NOT RUN AT MAXIMUM RATE INTO THE TEST RIG FOR MORE THAN A SHORT PERIOD.

We have run the unit at 1kHz into a suitable load for extended periods during testing. The load used was an in house unit that we can easily repair should it become over heated.

3.5 CHARACTERISING THE PULSE OUTPUT

The output is rated at >12kV. Often these unit will achieve 14kV. These voltages are too great for Barth type 142 attenuators, which are generally recognised as the best fast high voltage attenuator.

To overcome this we supply a "Suicide T" section. This consists of a cross of cables. The incident pulse is split four ways when it arrives at the cross. Half the voltage appears in each of the four arms (one arm is the incident arm). So the first transmitted pulse has half the amplitude. This is a completely passive mechanical split and so is insensitive to voltage (provided it does not break down). The Suicide "T" can be checked out at low voltage and it' DC breakdown voltage can be checked...

The pulses in the three arms (other than the output) reflect from the ends of the cables and come back to the cross point. One of the arms is terminated with an open circuit and one with a short circuit (installed after the breakdown voltage is established). These two reflections have equal and opposite amplitudes and so should not contribute to any signal into the output. After another round trip of these two arms the signals are back with the same polarity and do feed into the output.

In addition a signal is reflected back to the pulse generator. Some of this is reflected back from the pulse generator and appears back at the cross point. Some signal will then feed into the output.

Provided the arms of the Suicide "T" are long enough the pulser output can be monitored without contribution from these other signals. In practice, in order to keep the rise time as short as possible the arm back to the pulser is quite short and reflections down this arm will produce a signal on the falling edge of the pulser. So for looking at the long time history of the pulse the Suicide "T" should be separated from the pulsers by a suitable length of cable. See Figure 5 on page 11.

So we recommend that the attenuator system be a Suicide "T" followed by several Barth 142 20dB attenuators and when the voltage is down to <50 volts SMA 18GHz attenuators. The exact amount of attenuation required will depend upon the scope input sensitivity. We have found that when overdriving our 80804A Agilent oscilloscope the gain becomes repetition rate dependent. We

therefore never approach the maximum input voltage of the scope. For the measurements presented here we used 80dB of attenuation after the Suicide "T".

3.6 RF EMISSIONS AND EC DIRECTIVE 89/336/EEC

This equipment is a research tool that has been intentionally designed to generate short high energy electromagnetic pulses and the EM emissions will be highly sensitive to the load applied by the user, for example, the radiation just from some types of output cable may exceed EC permitted levels.

We believe that with this type of unit it has to be the system builders responsibility to verify that the pulser/load system complies with the EC directive unless the system is used in a screened electromagnetic environment.

We are not able to guarantee compliance with arbitrary loads but to minimise emissions we recommend:-

- 1. That any load is fully contained within a conductive metal screened box, with all joint surfaces gasketed or fitted with conductive fasteners at less than 50mm intervals.
- 2. That the load is connected to the pulser output with semi-rigid cable. The cable outer must be carefully connected to the HN output connector at one end and must be connected directly to the screened box containing the load at the point of entry. Flexible cables should only be used with caution, in particular RG303 type cable will need additional screening to control emissions.

3.7 LIFETIME

Solid state high voltage avalanche pulsers have a long but finite lifetime, generally characterised by the integrated number of output pulses. Fast rise time and high voltage lead to high electrical stress and such processes as partial discharges and other minor breakdown effects can gradually degrade insulation and reduce the lifetime.

With this in mind we recommend that pulsers are not operated unnecessarily and that arrangements are made to remove the trigger pulses when the pulse output is not required. This is most important when pulsers are operated near their maximum repetition frequency.

3.8 MAINTENANCE

IT IS VERY IMPORTANT TO MAKE SURE THAT ALL POWER IS DISCONNECTED BEFORE REMOVING THE COVERS.

The operating voltages may be checked by removing the top cover of the unit and connecting a voltmeter to the BNC socket mounted on the monitor PCB. A suitable lead is supplied.

Figure 7 The monitor card under the top cover. Connect the supplied monitor lead to the BNC connector and the other end to a suitable DMM and measure the voltages at each switch position.

Switch position	Voltage reading	Description
1	3.749V	Pulse stack 1
2	3.746V	Pulse stack 2
3	3.765V	Pulse stack 3
4	3.675V	Pulse stack 4
5	3.738V	Pulse stack 5
6	3.752V	Pulse stack 6
7	3.756V	Pulse stack 7
8	3.737V	Pulse stack 8
9	3.762V	Pulse stack 9
10	3.772V	Pulse stack 10
11	3.762V	Pulse stack 11
12	3.778V	Pulse stack 12
13	3.769V	Trigger stack 1 -labelled 13
14	3.742V	Trigger stack 2 -labelled 14
15	3.774V	Trigger stack 3 -labelled 15

Table 1Monitor Voltages

Kentech Instruments Ltd., Isis Building, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, U.K. 6-12-2013 Unit serial number

16	3.736V	Trigger stack 4 -labelled 16
17	3.735V	Trigger stack 5 -labelled 17
18	3.716V	Trigger stack 6 -labelled 18
19	-1.773V	Pre-trigger 1st. stack
20	-2.517V	Pre-trigger 2nd. stack
21	-2.497V	Pre-trigger 3rd. stack
22	23.97V	24 volt supply
23	11.96V	12 volt supply
24	0.00V	ground

The unit has been made with the ability to replace any of the 6 main pulse cards. This may be required after the unit has been used for a considerable time.

The pulse output cards may be accessed by removing the bottom cover of the unit.

Should this become necessary please contact us and we will advise as to whether we think this can be done by the user or of the unit should be returned for servicing.

The voltages in the table above represent 1000 times divided down voltage of those within the pulser, (apart from the last three).

3.9 DECLARATION OF CONFORMITY

We:- Kentech Instruments Ltd Isis Building, Howbery Park, Wallingford, Oxfordshire, OX10 8BA, U.K

Certify that this apparatus:-

Kentech PV High Voltage Pulse Generatorserial no.only.

Conforms with the protection requirements of European Community Directives:-

73/23/EEC	Low Voltage Directive
89/336/EEC	Electromagnetic Compatibility Directive
93/68/EEC	CE Marking Directive
	1 1 1 1 1

The following harmonized standards have been applied:-

BS EN55011 Emissions Specification (Group 2 Class A) Industrial, Scientific and Medical equipment

BS EN50082-2 Generic Immunity Standard Part 2 Industrial

BS EN 61010-1 Safety Requirements for Electrical Equipment for Measurement, Control, and Laboratory Use

The following documents contain additional relevant information:-

Kentech file reference

Name: A.K.L. Dymoke-Bradshaw

Signature:

A.K. L. Dymoke Bradshow.

On behalf of Kentech Instruments Ltd

Position: Director Issued: 6-12-2013

3.10 TEST RESULTS

The following test results were obtained using the supplied Suicide "T", or a similar in house one, followed by three Barth type 142 20db attenuators, a Radiall SMA 20dB 18GHz attenuator and an Agilent 80804A oscilloscope.

3.10.1 RISE TIME

All the components in the test gear degraded the output pulse from the unit, in particular the rise time.

Also as the pulse shape is not flat topped, the rise time is not well defined.

The table below indicates the various contributions to the observed rise time and indicates that the pulser is actually quite a bit faster than the data shows.

Item	Value	Units	Notes
Oscilloscope bandwidth	8.00E+09	Hz	
Oscilloscope rise time	3.96E-11	s	
Barth 142	1.00E-11	S	
18GHz attenuator	1.76E-11	S	
Suicide T on HP sampling oscilloscope	5.00E-11	S	measured
HP oscilloscope rise time	2.50E-11	S	
Suicide "T" alone	4.33E-11	S	
System	6.37E-11	S	
100ps looks like	1.19E-10	S	
104ps measured is actually	8.22E-11	S	

Table 2Rise time considerations

Saved: 06 DEC 2013 11:43:31

Saved: 06 DEC 2013 11:44:50

Saved: 06 DEC 2013 11:45:41

Figure 10 Rise time at 50% amplitude, 109ps indicated

Saved: 06 DEC 2013 11:46:43

Figure 11 Rise time at 25% amplitude, 105ps indicated

3.10.2 JITTER - TIMING UNCERTAINTY

File	Control Set	tup Measure	Analyze	Utilities	Help	6 Dec 2013 11:31 AM
	Acquisition 40.0 GSa/s	ı is stopped. 1.00 kots			- 	8GHz Standard BW
		00 kV/ 😤	2) ^{On}		0 ⁰	
I		Terrare and the second			+ A	
	11				+	
+						
t						
TI						
174	AV-		<u>+ </u> + -	<u>++</u> ++	<u>+</u>	ախոսիուտիությունությունությունությունությունությունություն։ Հայ
Į_∫1					7	
ĥ	1					
± ¥ + ⊼						
_J1			and the second data		+	
<u>↑</u>						
	1 🚔 🖸	• 24	H 50.0 p	os/ 👘 🕐	v 📫 -20.0 ps	 Image: A transformed and the second s
(1 of 2)	Measureme	ents Markers S	cales	ne(4-1)	Y may(1)	Rice time(1e)
	M Ran	ax 15.06 ps		"- (<u>* </u> * <u>/ </u>	- 14.65 kV	114, 49 ps 23 10 ps
	Std D	ev 1.7816 ps			- 48.9 V - 1.034 k	2,1643 ps 1,034 k
-						
Acquis	ition Samp Mem	oling mode real ory depth auto	time Norm matic 1000	al I pts		
	Sam; Aver	oling rate autor aging off Inter	natic Samp	ling rate	40.0 GSa/s	
-1						TO OL
Chann	el 1 Scale	e 2.00 kV/ Offs	et 6,850 K	V Couplini	g DC Impedanc	ce 50 Ohms
Chann	el 4 Scale	e 100 mV/ Offs	et 2.900 V	Coupling	DC Impedance	: 50 Ohms
Time b	ase Scale	e 50.0 ps/ Posi	ion -20.0 (ps Refere	nce center	
Trigge	r Mode	e edge Sweep t	riggered			
	Sens	itivity high Hol ce channel 4 Ti	doff time 1 riaaer leve	00 ns 2.976 V	Slope risina	
	5001					
Memor	y 1 Verti Horia	ical scale 2.00 zontal scale 50	kV/ Offset .0 ps/ Posil	6.85000 tion -20.0	KV 1000000000000	ps
Measu	re	ATime(m]	-1) AT	ime(4-1)	V max(1)	Rise time(1♠)
House	Curr	ent 4.34 ps	Sou	urce off	14.47 kV	102.13 ps
	М	ean 5.6925 p. Min -290 fs	5		14.5074 k 14.37 kV	V 100.7415 ps 91.40 ps
		Max 15.06 ps			14.65 kV	114.49 ps
	Ra	nge 15.35 ps			28 0 V	23.10 ps
	Std	Dev 1.7816 p	5		48.9 V	2.1643 ps
	# of M	eas 1.034 k			1.034 k	1.034 k
	Eage	DILL Num 1				KISING
	From	Dir Risina				
	From	Lvl Middle				
	То	Num l				
	To To	Dir Rising Ivl Middle				
1910	,5					
Marker	r Curr	Rise time ent 102.13 p	(1•) 5 A—	_(1) = 1	K D.O.S	Υ 6.62 kV
	M	ean 100.7415	ps B	(1) = !	51.49381 ns	Off screen
		Min 91.40 ps	orat 1998	Δ =	51.49381 ns	
		Max 114.49 p	5	1/ Δ X = 3	19.419810 MHz	
	Ra	nge 23.10 ps	24			
	Std	uev 2.1643 p	5			

Saved: 06 DEC 2013 11:31:47

Figure 12 Jitter with external trigger in "Direct" mode. Standard Deviation 1.78ps over 1034 shots.

Saved: 06 DEC 2013 11:33:27

Figure 13 Jitter with external trigger in "Delay" mode, set to zero. Standard Deviation 1.93ps over 1044 shots.

Saved: 06 DEC 2013 11:34:26

Figure 14 Jitter with external trigger in "Delay" mode, set to maximum. Standard Deviation 2.68ps over 1054 shots.

Saved: 06 DEC 2013 11:01:48

Figure 15 Jitter with interanl trigger in "Delay" mode, set to zero. Standard Deviation 2.1ps over 1033 shots.

Saved: 06 DEC 2013 11:02:58

File	Contro	l Setup	Measure	Analyze	Utilities	Help		6 Dec 201	3 11:02 AM
	Acqui 40.0	sition is GSa/s 1.	stopped. 00 knts		~~~~	~ i ~~~~	8GHz	Standard BW	
	0	On 200 V/	~	2) ^{On}					
I			landers .				///		
	1						<u> </u>		
++									
ţţ									
FIF	1					÷ 1/			
<u>17</u> ↔	- And	40004000400040004		haalaan kaakaa	h				BV
J-√ L						- <u>i</u> //			
1						÷ 🔏			
t ñ	1								
Ì-;Ft						By By			
More			⊠⊜ Istauluana I.⊂	H 50.0	ps/	∼ -143.0 ps	< U >	4.080 V	3.
(1of 2)		asurements	ATime(ml-1) V	max(1)	Rise time(1.)			?
All		Max Range	12.29 ps	70	.05 К.V (77.46 ps 8.64 ps			
	#	of Meas	1.037 k	1.0	, , 137 k	1.037 k			
Acquis	ition	Sampling	ı mode real	time Norn	nal				
		Memory Sampling	depth autor rate autor	matic 100 natic Samj	0 pts oling rate	40.0 GSa/s			
		Averagin	ng off Inter	polation c	n				
Chann	el 1	Scale 20	0 V/ Offset	1.305 kV	Coupling	DC Impedance 5	0 Ohms		
Chann	el 4	Scale 20	mV/ Offset	4.000 V	Coupling I	OC Impedance 50	Ohms		
Time b	ase	Scale 50	.0 ps/ Posit	ion -143.	0 ps Refe	rence center			
Triage	r	Mode ed	ae Sween ti	riggered					
mggo	2	Sensitivi	ty high Hold	doff time	100 ns	-			
		Source c	hannel 4 Tr	igger leve	el 4.080 V	Slope rising			
Memor	y 1	Vertical : Horizont	scale 200 V, al scale 50.	/ Offset 1 0 ps/ Pos	.30500 k ^v ition -143	/ .0000000000000000	5		
		nonzona	u		((1)	Dias +i(1-			
Measu	re	Current	-3.69 ps	·1) (≥ 2.	105 kV	70.64 ps	•1		
		Mean	-970.3 fs	72.	10500 kV	72.8061 ps			
		мах	5.10 ps	7 2.	105 KV	77.46 ps			
		Range	12.29 ps	70	٧	8.64 ps			
		Std Dev	1.7953 ps	; 70.	0 V	1.2555 ps			
	•	# of Meas	1. 0 37 k	1.	0 37 k	1.037 k			
		Eage Dir Erom Num	81			RISING			
		From Dir	Risina						
		From Lvl	Middle						
		To Num	1						
		To Dir To Lvl	Rising Middle						
		0.000	AT:	1)		v	v		
Marker		Current	ചിണe(ml- -3.69 n≤	·⊥) A	-(ml) = -	^ 103 ps	т 1,30131 km		
		Mean	-970.3 fs	B-	(1) = -	106.94 ps	1.301 kV		
		Min	-7.19 ps		Δ = -	3.69 ps	0.0 V		
		Max	5.10 ps		1/ Δ X =	271. 010 2383 04 8 G	SHz		
		Range	12.29 ps						
		Std Dev	1.7953 ps	5					

Figure 16 Jitter with internal trigger in "Delay" mode, set to zero, minimum amplitude. Standard Deviation 1.79ps over 1037 shots.

3.10.3 AMPLITUDE CONTROL

There is some overlap of the coarse and fine settings. As the technique for varying the amplitude is different for fine and coarse controls the pulse shape is slightly different. Generally the fine control degrades the shape more, especially at very low settings of the fine control.

Saved: 06 DEC 2013 10:37:08

Figure 17 Range of amplitudes adjusted with the fine control at 100% on the coarse control.

Saved: 06 DEC 2013 10:38:04

Figure 18 Range of amplitudes adjusted with the fine control at 75% on the coarse control.

Saved: 06 DEC 2013 10:39:25

Figure 19 Range of amplitudes adjusted with the fine control at 50% on the coarse control.

Saved: 06 DEC 2013 10:40:28

Figure 20 Range of amplitudes adjusted with the fine control at 25% on the coarse control.

Saved: 06 DEC 2013 11:05:49

on the fine control.

Ohms

Saved: 06 DEC 2013 10:52:31

Acquisition	Sampling mode real time Normal Memory depth automatic 8002 pts Sampling rate automatic Sampling rate 40.0 GSa/s Averaging off Interpolation on			
Channel 1	Scale 2.00 kV/ Offset 5.150 kV Coupling DC Impedance 50 Ohms			
Channel 4	Scale 50	Scale 50 mV/ Offset 4.000 V Coupling DC Impedance 50 Ohms		
Time base	Scale 20.	Scale 20.0 ns/ Position 80.2840 ns Reference center		
Trigger	Mode edge Sweep triggered Sensitivity high Holdoff time 100 ns Source channel 4 Trigger level 4.180 V Slope rising			
Measure	Current Mean Min Max Range Std Dev # of Meas Edge Dir	V max(1) 9.78 kV 9.801 kV 9.75 kV 9.85 kV 100 V 27 V 11	Rise time(1•) 108.83 ps 112.156 ps 103.70 ps 117.10 ps 13.40 ps 3.611 ps 11 Rising	
Figure 22	Range of coarse delay. Approximately 10ns per step.			

Saved: 06 DEC 2013 10:53:39

Channel 4 Scale 50 mV/ Offset 4.000 V Coupling DC Impedance 50 Ohms

Time base Scale 2.00 ns/ Position 7.9950 ns Reference center

Trigger Mode edge Sweep triggered Sensitivity high Holdoff time 100 ns Source channel 4 Trigger level 4.180 V Slope rising

V max(1) Rise time(1+) Measure 9.77 kV Current 111.19 ps 120.822 ps 9.799 kV Mean. 9.70 kV 108.38 ps Min 166.16 ps Max 9.90 kV Range 190 V 57.78 ps Std Dev 43 V 11.693 ps # of Meas 107 107 Rising Edge Dir

Figure 23 Range of fine delay at zero coarse delay.

Saved: 06 DEC 2013 10:58:36

Figure 24 Internal trigger - Pretrigger pulse and main output. The 37.74 ns needs correcting to 44.77 because of external cables.